These techniques cover most of what data scientists and related practitioners are using in their daily activities, whether they use solutions offered by a vendor, or whether they design proprietary tools. When you click on any of the 40 links below, you will find a selection of articles related to the entry in question. Most of these articles are hard to find with a Google search, so in some ways this gives you access to the hidden literature on data science, machine learning, and statistical science. Many of these articles are fundamental to understanding the technique in question, and come with further references and source code.
Starred techniques (marked with a *) belong to what I call deep data science, a branch of data science that has little if any overlap with closely related fields such as machine learning, computer science, operations research, mathematics, or statistics. Even classical machine learning and statistical techniques such as clustering, density estimation, or tests of hypotheses, have model-free, data-driven, robust versions designed for automated processing (as in machine-to-machine communications), and thus also belong to deep data science. However, these techniques are not starred here, as the standard versions of these techniques are more well known (and unfortunately more used) than the deep data scienceequivalent.
To learn more about deep data science, click here. Note that unlike deep learning, deep data science is not the intersection of data science and artificial intelligence; however, the analogy between deep data science and deep learning is not completely meaningless, in the sense that both deal with automation.
Also, to discover in which contexts and applications the 40 techniques below are used, I invite you to read the following articles:
21 data science systems used by Amazon to operate its business
24 Uses of Statistical Modeling
Finally, when using a technique, you need to test its performance. Read this article about 11 Important Model Evaluation Techniques Everyone Should Know.
The 40 data science techniques
Linear Regression
Logistic Regression
Jackknife Regression *
Density Estimation
Confidence Interval
Test of Hypotheses
Pattern Recognition
Clustering - (aka Unsupervised Learning)
Supervised Learning
Time Series
Decision Trees
Random Numbers
Monte-Carlo Simulation
Bayesian Statistics
Naive Bayes
Principal Component Analysis - (PCA)
Ensembles
Neural Networks
Support Vector Machine - (SVM)
Nearest Neighbors - (k-NN)
Feature Selection - (aka Variable Reduction)
Indexation / Cataloguing *
(Geo-) Spatial Modeling
Recommendation Engine *
Search Engine *
Attribution Modeling *
Collaborative Filtering *
Rule System
Linkage Analysis
Association Rules
Scoring Engine
Segmentation
Predictive Modeling
Graphs
Deep Learning
Game Theory
Imputation
Survival Analysis
Arbitrage
Lift Modeling
Yield Optimization
Cross-Validation
Model Fitting
Relevancy Algorithm *
Experimental Design
The number of techniques is higher than 40 because we updated the article, and added additional ones.
Some opinions expressed in this article may be those of a guest author and not necessarily Analytikus. Staff authors are listed in https://www.datasciencecentral.com/profiles/blogs/40-techniques-used-by-data-scientists